

This is a guide to understanding the
Manticore application for develop-
ers. It provides historical context
for decisions made in the codebase,
some discussion around the design
of the user interface, and descrip-
tions of program structure and al-
gorithmic behaviour.

Additionally, I have included some
notes about things I would consider
changing going forward.

This document is accurate as of
May 2024.

The Manticore — It’s Care and Feeding

Page 3

Contents
An overview and history of Manticore. 4
Development Environment 5
The User Interface 6
Scrolling 6
Edition toggle 6
Party 6
Filters 7
“Attributes” Filters 7
Specific Monsters 7
Encounters 8
When Generation Occurs 8
Encounter Presentation 8
Responsive Layout 9
Application Data 10
Schema 10
An example monster record: 11
Navigating the Project 12
Source code organisation 12
Tests 13
Data Processing and Representations 14
A note on types and classes 14
Costs 15
MonsterScale 15
Starting an allocation 15
Exhaustive Allocation 16
allocateMonsters 16
ForkingBufferCursor 17
allocate inner function 17
Random Allocator 18
allocate 18
ShrinkableRandomAccess Collection 18
Build 20
SvelteKit 20
Deploy 21
Changing paths 21

Page 4

The Manticore — It’s Care and Feeding

An Overview and History of Manticore.
Manticore is an purely client-side
browser based application. There is
no server side. A Node.JS environ-
ment is required to run the build
tools but is not required for deploy-
ment.

It has been developed over the
course of a decade, finally landing in
a Typescript and Svelte implemen-
tation. This long history has in-
volved a number of platform shifts
that have each had some impact on
the nature of the codebase.

The original core of the application
was a logic program written in Clo-
jure. Logic programs are particu-
larly well suited to complex
searches, but was rewritten in
Typescript to make it a purely
client side app, while porting the
generation algorithm. As a result,
the core algorithm is still a back-
tracking non-deterministic
searcher.

Non-deterministic search is a key
feature of Manticore when com-
pared to other encounter genera-

tors: instead of generating a small
set of random encounters, Manti-
core attempts to generate all pos-
sible encounters that match the
search criteria. This has recently
been expanded to allow the user to
choose between exhaustive and
random.

Exhaustive generation impacts the
design of the UI and the codebase.
Internally, exhaustive generation is
referred to as deterministic gener-
ation. See page 16 for more.

Some design decisions in the archi-
tecture of the program date back
to a time when any application de-
livered over the web needed to sup-
port Internet Explorer in some ca-
pacity. While specific support has
been removed, some vestiges of
that origin may remain.

Finally, the first edition rules had a
test suite built around property
jsverify and mocha. As the second
edition update was never com-
pleted, tests have not yet been im-
plemented for the new rules.

https://www.typescriptlang.org
https://svelte.dev

The Manticore — It’s Care and Feeding

Page 5

Development Environment
You will need a Node.JS environ-
ment and git version control tools
to work on this project.

The source code repository can be
found at: https://github.com/bre-
haut/manticore.git

npm will install all the other tooling
you need:

$ npm install

The Svelte tooling has an inte-
grated watcher/server that is
launched with:

$ npm run dev

You can build a distributable arte-
fact for production with:

$ npm run build

And run the unit tests with:

$ npm run test:unit

For more information see the
project README or the Svelte and
Sveltekit documentation.

https://nodejs.org/

Page 6

The Manticore — It’s Care and Feeding

The User Interface
We’ll start by looking at the user in-
terface. The way the interface op-
erates naturally dictates much of
the way the application functions
internally.

Scrolling

One thing you might immediately
note about the design of the UI is
that it is one long page broken into
sections, that you scroll down. You
might be used to other encounter
generators that have collapsable
sections or disclosures to contain
and hide away controls. However,
scrolling is a natural idiom of the
web. The design of manticore in-
tends the user to start at the top,
setting the most general details of
their search, and scroll down ad-
justing more fine grained details as
they go, and eventually landing on
the results.

If at any time the user feels they
need to change their criteria
(maybe their search is too coarse
and they are getting to many re-
sults to process, or they have fil-

tered out too many options, result-
ing in limited or uninteresting en-
counters), they can scroll up higher.

Edition toggle

There is a toggle at the top right of
the UI “Use 13th Age 2e Alpha
rules” that switches both the gen-
eration engine, as well as some
small changes to the UI. This cur-
rently defaults to 1e rules. Changes
to this toggle are saved in local
storage.

Party

This section sets sets party size
and—in 2e mode—number of en-
counters per day. These values are
stored in local storage. This section
is used to calculate the budget for
fitting monster allocations into.

Party level is also used for the most
coarse grained filter in the system.
Change this and you should see the
counts beside tags in the following
section change.

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

The Manticore — It’s Care and Feeding

Page 7

Filters

The filtering system is the core of
the UI. Filters are broken down into
five categories:

• Book

• Size

• Kind

• Level

• Attributes

All these filters interact. A filter
with it’s toggle to the left
(deactivated) is turned off.
Interacting with any checkbox in
the filter category will cause the
toggle to engage automatically.

All filter checkboxes are anded
together. For example, checking
Archer and Blocker will select any
monster that fits either criteria.

Each checkbox label has a small
number to the right. This is the
count of monsters that fit that
criteria. In the example to the right,
there are 16 monsters that count
as Archers.

“Attributes” Filters

While the first four filters are self
explanatory and correspond to
specific 13th Age concepts, At-
tributes is a Manticore specific
term.

Attributes are just textual tags
against monsters to categorise
them in different ways that seemed

appropriate when I was entering
the data. Some of these are fine
grained, some are coarse. I’ve used
sections of the various bestiaries
as guides, and invented my own as
well.

This is one area where a more
editorial eye from the 13th Age
team would benefit the applica-
tion.

Specific Monsters

This section is similar to the Filters
section above in UI. Instead of oper-
ating on categories, the user can
specify individual monsters they
wish to use.

Like with the individual Filters this
section can skipped.

Unlike the Filters, this section dy-
namically updates with all the avail-
able monsters. As a result this sec-
tion is the clearest signal to the
user about how big the pool of mon-
sters used for generation is.

Page 8

The Manticore — It’s Care and Feeding

Page 8

The Manticore — It’s Care and Feeding

Encounters

Finally the Encounters section is
displays the generated encounters.

This section includes two ra-
dioboxes to switch between gener-
ating encounters Exhaustively or
Randomly.

• Exhaustively: this is the de-
fault, and conceptually what
Manticore was designed to do.
Given the same input it always
generates the same outputs.

I designed the app for this be-
cause I wanted to be able to ex-
plore the space of encounters in
a predictable way, including re-
fining and tuning the results.

• Randomly: this was added due
to popular request. Some folks
just don't like being over-
whelmed with a lot of options.

When Generation Occurs

Whenever the user makes a change
to the filters the system fires off a
new WebWorker to generate in the
background. Prior generations are
terminated if they have not com-

pleted. Once the results are avail-
able they are displayed in the En-
counters section. Using the worker
ensures we can do computationally
intensive work without impacting
the user experience.

Random generation necessarily re-
quires the user to indicate that
they want a reroll, as they may not
find what they are after with the
initial generation.

Encounter Presentation

Encounters appear in rows. Each
antagonist type is summarised with
the name, the number of them in
the encounter, and metadata in-
cluding book and page number, and
a link to the SRD if available. See
below for an example.

In some instances, the generator
can produce the same antagonists
in different combinations. When
this occurs they will be grouped to-
gether, with a single entry pulled
out at the top, and a disclosure with
“N variations” appearing immedi-
ately below. Toggling this disclosure
will reveal the alternate break-
downs.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers

The Manticore — It’s Care and Feeding

Page 9

Additionally, individual antagonists
that have a higher chance of out-
matching the specified party will be
colour coded either yellow or or-
ange, matching the key.

Responsive Layout

The user interface does have a re-
sponsive layout. This is a fairly sim-
ple implementation performed en-
tirely with CSS rules.

The mobile UI is a little awkward
given the amount of material
displayed. This would be an
area worth investigating to im-
prove usability.

The Manticore — It’s Care and Feeding

Page 9

Page 10

The Manticore — It’s Care and Feeding

Application Data
The data for the application resides
in a single JSON file that is loaded
when the application starts.

You can find it in the project in stat-
ic/data/bestiary.json

The schema for this data is de-
signed first and foremost to make
reduce the amount of work for data
entry. As a result it is quite terse.

When the application was writ-
ten there were no other easily
accessible datasets of monster
data available, so I created my
own for the project.

It may benefit the project to re-
consider how this data is han-
dled, to see if sharing with other
projects is viable, and to reduce
the overall workload of people
creating tools for 13th Age.

When loaded the data is trans-
formed into a more amenable inter-
nal format. We will discuss that
later in this document.

Schema

The top level object in the JSON file
are two keys:

• Books: Contains an object where
the keys are the names of
books containing monsters, and
the values are arrays of
monster records. See below.

• srdReferences: Contains an
object where the keys are
monster names. The values are
URLs to SRD material about
the monster in question. The
names need to be an exact
textual match to the monster
name defined in Books.

The individual monster records are
arrays, purely to reduce the repeti-
tive typing that using objects would
require. There are over 700 mon-
sters in the current dataset, and it
doesn't include books like 13th Age
in Glorantha.

The Manticore — It’s Care and Feeding

Page 11

Monster records have the following
values in order:

1. Name: a string. This is what is
displayed to the user.

2. Level: a number.

3. Size: a string. This needs to be
one of the following:

"normal"
"large"
"huge"
"weakling"
"elite"
"double strength"
"triple strength"
"large elite"

4. Kind: a string. There is no
strict definition for Kinds.

5. Attributes: an array of strings.
Each string in the array is a tag
for filtering this monster. See
Attributes, page 7

6. Page number: a number.

An example monster record:

["Gnoll war leader", 4, "normal","leader",["gnoll","humanoid"], 229],

Name Level Size PageKind Attributes

To facilitate fast data entry, in-
vestigate a project snippet in
VS Code so that you can tem-
plate out the common markup.
This would also make it viable to
switch from the array based
syntax here to a JSON object
syntax without burdening any-
one creating new records.

http://%20investigate%20a%20project%20snippet%20in%20VS%20Code
http://%20investigate%20a%20project%20snippet%20in%20VS%20Code
http://%20investigate%20a%20project%20snippet%20in%20VS%20Code

Page 12

The Manticore — It’s Care and Feeding

Navigating the Project
Overall the project source files are
organised very simply. At the top
level, aside from all the NPM and
Svelte Kit bumpf, there are three
folders of note:

• src: This contains all the Type-
script and Svelte files. This is
covered in the next section

• static: All the static assets for
the project are found here,
most significantly this includes
the data files, but also the
fonts, images, and icons.

• Build: This folder wont exist on
first checkout but is created
when you run a build. This will
contain all the assets ready to
deploy, including compiled ver-
sions of all the Typescript and
Svelte code, and all the static
data from the static folder.

Source code organisation

Essentially all the code for the ap-
plication lives inside the lib folder.

The routes folder contains the
svelte entry-point (+page.svelte)
and the basic markup for setting up
the application in +layout.svelte

Notable files at the top level are the
global stylesheet, and the remain-
ing tests that perform an integrity
check on the bestiary data.

The Lib Folder

Within lib are three key folders, and
some toplevel code:

• allocator: This is the core of the
generation logic. Both the
exhuastive and random
allocators are found here.
These will be covered in more
detail later.

• costs: This code produces a
cost for a monster based on
the rules provided in the

The Manticore — It’s Care and Feeding

Page 13

13th Age core rules. This code
also compartmentalises the
differences between editions of
the game. Outside of this,
nothing else in the model layer
of the application is aware of
the distinction.

• ui: All the svelte code is
contained within this folder.
Unsurprisingly, it’s all the code
for the user interface.

Also within the lib folder are some
core files for handling data, repre-
senting a bestiary, and supporting
utility code such as functions for
operating on iterators (iter.ts, clus-
terItems.ts).

These will be covered in the next
section, Data Processing and Rep-
resentation.

Tests

The majority of the test suite ex-
ists here in *.test.ts files. These are
largely tests from the V1 codebase,
and don’t provide great coverage
for second edition specific code.

Please note that the tests in bes-
tiary.test.ts use a style of testing
called Property Based Testing. The
short version is that the tests pro-
duce random known-good inputs,
and then programatically check the
output of the code under tests
against those inputs, rather than
testing specific examples.

This lets us have greater confi-
dence that the tests cover more
surface area of the code under test
than exemplar based testing could

achieve. As a result there are less
tests that you might expect to see.

The jsverify library is used to sup-
port property based testing.

https://hypothesis.works/articles/what-is-property-based-testing/
https://jsverify.github.io

Page 14

The Manticore — It’s Care and Feeding

Data Processing and Representations
Loading and processing the bes-
tiary data file begins in src/ui/App.
svelte in the onMount handler.

The JSON file is fetched and the
blob is passed into the createBes-
tiary function, along with the edi-
tion. The edition is used to deter-
mine the current CostSystem.

createBestiary assumes that the
JSON blob is a DataSet type (defined
in data.ts). This assumption is

checked using the bestiary_data.
tests.ts file so should be reliable.

The major piece of work prior to in-
stantiating a new Bestiary object is
transforming the monster records
(see page 11), into objects with the
Monster type. This process includes
normalising scale, which takes into
account size and threat, and is used
as part of the cost calculation.

A Bestiary holds both the collection of
Monsters, and also a CostSystem. It’s

A note on types and classes

Much of the manticore codebase uses Typescript types and plain
javascript objects rather than classes. This is generally the case for all the
immutable data carry records such as a Monster. Classes, such as Bes-
tiary, are used for structural and behavioural objects.

In almost all cases constructors are never exported from modules, and
wrapper functions are provided instead.

Where possible all types are immutable, with code written in a functional
style transforming one immutable record into another.

JSON Monster[] Bestiary

Facets Facet Counts

CostSystem

PricedMonster[] GroupedEncounter[]

The Manticore — It’s Care and Feeding

Page 15

role is to provide the UI with meta-
data about the available monsters,
and calculate counts for various
facets as filters change, and secondly
to produce a collection of costed
monsters ready for the allocator algo-
rithm to use.

The allocator is given the collection of
priced monsters, and the party de-
tails to determine a total budget. The
details of the allocators is de-
scribed later.

Finally, the allocator returns a col-
lection of GroupedEncounters. A Grou-
pedEncounter is a collection of En-
counters, and each Encounter is an
array of Allocations, and a record of
any percentage of the budget left
unspent. An Allocation is a Monster,
the number of that monster in this
encounter, and a total cost for the
Allocation. Total cost is the mon-
ster’s cost × the number in this all-
cation. A lot of wrapping types here
but all very simple.

The allocations are returned to the
UI to display to the user.

Costs

The specific details of costing
differs between first and second
edition. The first edition code is a
little more opaque just because the
first edition didn't have as much
clarity around the building battles
rules.

In both editions the values for costs
are multiplied up from the values in
the books to ensure that all calcula-
tions use integer values. While
JavaScript number values are tech-

nically always floats the engines do
ensure that when a number looks
like an integer, it acts like one.

Cost systems have a method to de-
termine what threshold of unspent
points are allowed. Currently this is
always 0: the entire budget must be
spent to be considered viable.

MonsterScale

Internally Manticore uses Scale to
compute costs. Scale is a tuple of
the normalised Size (Double Sized
is equivalent to Large for the pur-
poses of costing), and normalised
Threat (mook, weakling, normal,
elite).

Starting an allocation

Results.svelte is responsible for
starting generation and displaying
the results. The function generate
is called whenever the selected
monsters change. This function
manages a WebWorker. If a change
to the selection occurs before the a
generation has completed the prior
WebWorker is terminated. generate
also has some heuristics to mini-
mize a flash of content for deter-
ministic generation.

GenerationWorker

Svelte wraps up workers using a
special module loading path format:

import GenerateWorker from "$lib/
generate.worker.ts?worker";

The imported class can then be in-
stantiated as normal, and can be
treated as a Worker.

Page 16

The Manticore — It’s Care and Feeding

Exhaustive Allocation
The exhaustive allocator is
launched from src/generate.worker.
ts.

This allocator is referred to as the
deterministic allocator within the
codebase, because it always pro-
duces the same results for a given
input set. This is in contrast to the
random allocator which obviously
does not.

You can find the deterministic allo-
cator in src/allocator/deterministi-
cAllocator.ts.

The two key pieces of code to un-
derstand this allocator are the
function allocateMonsters and the
class ForkingBufferCursor.

allocateMonsters

This function is a backtracking
depth first search. Backtracking is
implemented using the Forking-
BufferCursor, and a recursive func-
tion, allocate, within allocateMon-
sters.

Note that allocate is a generator
function, meaning it yields out re-
sults one by one rather than build-
ing up a list to return. This is allows
the function to be more memory
efficient by not building a lot of
short lived structures.

Aside from the inner function, the
body of allocateMonsters just sets
everything up for the first call into
allocate, and limited the amount of
items generated if the search space
turns out to be massive (which is
trivially easy to do).

A functional programming
digression.

The core of this algorithm is writ-
ten in a functional style. For the
purposes of this discussion that
means that it never mutates any
values, instead creating new values
for the next step. This is important
for the backtracking as it means we
can leverage the call stack for state
management and know that when
we return from a recursive call, we

https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Depth-first_search
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*

The Manticore — It’s Care and Feeding

Page 17

are backtracking to a previous
state of the program.

The recursive function tracks a
variable called acc, the accumulator
variable, which is a JavaScript Ar-
ray. acc is cloned with the slice()
method to get new copies of the ac-
cumulator to pass to child calls.

ForkingBufferCursor

This class is a simple cursor object
that wraps up an Array, and allows
its consumer to:

• Examine the current item with
value()

• Advance one item at a time
with next()

• Determine if the cursor has
walked the entire buffer with
done()

• Or fork off another
ForkingBufferCursor from the
current location with either
fork() or forkAndNext()

allocate inner function

The real work of generation occurs
here.

The first step of this function is to
determine if this branch of the
search has reached its maximum
depth, and if so to return. Remem-
ber that this function is called re-
cursively.

There are three criteria for reach-
ing the end of a search branch:

• The budget has been spent:
Yield results.

• The maximum number of
monster types has been
reached: The system is capped
at 7 (possibly too high a
number), and this branch needs
to be terminated because it
would result in an unwieldy
encounter.

• We’ve run out of monsters to
allocate and this branch needs
to be terminated.

Secondly we need to repeat the
current monster to fill out an allo-
cation. The generator function re-
peatMonster produces a stream of
allocations from one up to the max-
imum possible with the remaining
budget. Note that repeatMonster
has a special case for managing
mooks in second edition.

Before we yield the results of re-
peatMonster, the function recurses.
In doing so, it searches the branch
that does not include any alloca-
tions for this monster. The results
of the recursive call to allocate are
yielded into the current scopes
output.

Finally we look through each alloca-
tion generated by repeatMonster,
and recurse again with each varia-
tion of the allocation, yielding the
results of those recursive calls into
the current scopes output.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice#description

Page 18

The Manticore — It’s Care and Feeding

Random Allocator
The random allocator is signifi-
cantly simpler than the determinis-
tic allocator.

The core of this algorithm is the
ShrinkableRandomAccessCollection, a
class that wraps up an array and al-
lows random selection up to a max-
imum “weight”, and an allocate
function that produces a number of
allocations, in this case randomly.

allocate

Like the deterministic allocator,
the algorithm is implemented in an
allocate function. Rather than need-
ing recursive inner functions we
simply have two nested while loops:

The outer loop runs until a circuit
breaker is hit due too excessive of
failures is reached, or the maximum
allocations occurs. The circuit
breaker value is currently 100. This
value is relatively arbitrary; it
seems to work, but theres not a lot
of science behind it.

The inner loop is builds a single allo-
cation, looping until it spent its
budget, or it runs out of monsters
to pull from. Each allocation up-
dates the shrinkable collection’s
maximum weight.

Before an allocation is yielded,
there is a call to the collate function
that groups like monsters to-
gether. This step could be rolled
into the allocation (see the TODO),
but it seemed simpler to do it as a
separate step later.

ShrinkableRandomAccess

Collection

As mentioned previously, this is the
core of this algorithm.

When instantiated (via a static
method; the constructor itself is
private), it takes a collection of ob-
jects, and a getWeight function. For
the purposes of this application the
weight is always the cost of the
monster in question.

The Manticore — It’s Care and Feeding

Page 19

The weight is used to sort the col-
lection of monsters most costly to
least costly. A field called the front
tracks where access is allowed to
start from

This allows the consumer to:

• getRandom() to randomly choose
an index between that front and
the end of the collection,
returning the item at that
index.

• setMaxWeight(newMax) to
produce a new
ShrinkableRandomAccessCollection
that has the new front value
calculated by walking the
current front forward until it
finds an item that has a weight
that does not exceed the
newMax.

• fork() the collection to get a
new
ShrinkableRandomAccessCollection
that has the current front and
max.

• done() to determine if the front
has walked beyond the end of
the collection.

This means that we never fetch an
item that has a larger weight than
the max, due to the ordering of the
internal collection.

A note about the
getWeightComparator comparator

Experienced developers may see
the implementation of this com-
parator as clumsy and inefficient as
it could be implemented with simple

arithmetic on aWeight and bWeight.
This is true, but the resulting code
is harder to reason about, so the
fully spelt out version is used in-
stead.

front

Start

end

Page 20

The Manticore — It’s Care and Feeding

Build
Building Manticore is straight for-
ward:

$ npm run build

This will build all the typescript, all
the svelte, and manage all the static
assets.

The resulting hive of files will be
created in the build folder in the
root of the project.

SvelteKit

The build for this project is man-
aged by Svelte Kit.

The static adaptor is used to make
a static site single page application.

https://kit.svelte.dev/
https://kit.svelte.dev/docs/adapter-static

The Manticore — It’s Care and Feeding

Page 21

Deploy
Currently Manticore expects to be
in the top level of the domain its
hosted in. Which is to say that (for
example) build/index.html needs to
be in the root folder of the domain
(such as the former canonical do-
main of manticore.brehaut.net).

With this caveat out of the way, de-
ployment of Manticore is trivial:
The hive of files in build needs to be
placed in a web server.

As an example, I have a script that
does:

#!/bin/sh
rsync -av build/* [user]@[host]:[web-
server-path]

Done.

Changing paths

If you don’t wish to have Manticore
hosted in the root of the domain it’s
hosted on, you will need to consult
the Svelte and Svelte Kit documen-
tation.

	An overview and history of Manticore.
	https://www.typescriptlang.org/
	Development Environment
	The User Interface
	Scrolling
	Edition toggle
	Party
	Filters
	“Attributes” Filters
	Specific Monsters
	Encounters
	When Generation Occurs
	Encounter Presentation
	Responsive Layout

	Application Data
	Schema
	An example monster record:

	Monster records
	Navigating the Project
	Source code organisation
	Tests

	Data Processing and Representations
	A note on types and classes
	Costs
	MonsterScale
	Internally Manticore uses Scale to compute costs. Scale is a tuple of the normalized Size (Double Sized is equivalent to Large for the purposes of costing), and normalized Threat (mook, weakling, normal, elite).
	Starting an allocation

	Data Processing and Representation.
	Exhaustive Allocation
	allocateMonsters
	ForkingBufferCursor
	allocate inner function

	Random Allocator
	allocate
	ShrinkableRandomAccess Collection

	Build
	SvelteKit

	Deploy
	Changing paths

